Закон электромагнитной индукции и его вывод из закона сохранения энергии

Закон электромагнитной индукции и его вывод из закона сохранения энергии

33) Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока , проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем в 1831 году . Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина э.д.с. не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток , вызванный этой э.д.с. , называется индукционным током.

Согласно закону электромагнитной индукции Фарадея (в системе СИ ):

— электродвижущая сила , действующая вдоль произвольно выбранного контура,

— магнитный поток через поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца , названное так по имени русского физика Э. Х. Ленца :

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

— электродвижущая сила,

— число витков,

— магнитный поток через один виток,

— потокосцепление катушки.

В дифференциальной форме закон Фарадея можно записать в следующем виде:

или с помощью простейшей эквивалентной формулы:

Здесь — напряжённость электрического поля , — магнитная индукция , C — произвольная площадка, — её граница.

Закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля.

ВЫВОД ЗАКОНА ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ ИЗ ЗАКОНА СОХРАНЕНИЯ ЭНЕРГИИ.

ε Idt=I(c.2)Rdt+dA; dA=Id Ф m; ε Idt=I(c.2)Rdt+Id Фm;

I=( ε – d Ф m/dt)/R=( ε + ε инд)/R;

Согласно закону Фарадея возникающая ЭДС индукции,

возникает не только в движущемся проводнике, но и в неподвижном. Появление ЭДС индукции в движущемся проводнике можно объяснить действием силы Лоренца на свободные заряды, движущиеся в магнитном поле вместе с проводником. Однако такое объяснение не подходит для неподвижных зарядов. Сила Лоренца на неподвижные заряды не действует. Для объяснения появления ЭДС индукции в неподвижных проводниках Максвел предположил, что всякое перемещене магнитного поля порождает в окружающем пространстве электрическое поле, которое и является причиной возникновеня ЭДС индукции. Циркуляция вектора E электрического поля по замкнутой поверхности контура и есть ЭДС индукции, т.е. ε инд = замкнутый ∫ [по L]E(в) dl(в)= — dФm/dt. Это электрическое поле является вихревым (для потенциального поля циркуляция вектора E по замкнутому контуру равна нулю).

wmelon.narod.ru

4.2. Вывод основного закона электромагнитной индукции из закона сохранения и превращения энергии

Основной закон электромагнитной индукции (закон Фарадея) можно вывести из закона сохранения и превращения энергии, что и было сделано Гельмгольцем (1847 г.).

Пусть имеется замкнутая цепь (контур с током), содержащая источник ЭДС, величина которой , и пусть полное сопротивление этой цепи равно R. Обозначим силу тока в цепи через I. Количество энергии, затрачиваемое источником ЭДС за время dt, как известно, равно

.

Если внешнее магнитное поле отсутствует или контур неподвижен, то вся эта энергия превращается в тепло, количество которого определяется законом Джоуля-Ленца:

.

.

Откуда после сокращения на dt получим закон Ома для замкнутой (полной) цепи в интегральной форме:

и . (4.11)

При перемещении такого контура с источником ЭДС (с током) в магнитном поле часть энергии источника тока будет расходоваться против перемещения контура в магнитном поле, а часть выделяться в контуре в виде тепла. Расходование энергии источника тока против перемещения контура с током в магнитном поле связано с тем, что для получения индукционных токов методом перемещения проводника в магнитном поле необходимо совершить работу, так как сила, действующая на индукционный ток, препятствует перемещению проводника.

Известно, что работа по перемещению проводника с током в магнитном поле dA = IdФ, где dФ – величина изменения магнитного потока, сцепленного с данным контуром.

Так как при таком перемещении магнитное поле остается неизменным, то эта работа может совершаться лишь за счет энергии источника тока.

На основании закона сохранения и превращения энергии будем иметь

.

. (4.12)

Решая уравнение (4.12) относительно силы тока, найдем

. (4.13)

Принимая равенство (4.13) за математическое выражение закона Ома и сравнивая его с полученным ранее для этого же контура в отсутствие магнитного поля, можно установить, что благодаря изменению потока магнитной индукции к имевшейся в цепи ЭДС источника прибавилась ЭДС:

. (4.14)

Как видно, величина ЭДС электромагнитной индукции не зависит от величины  источника тока и, значит, сохранит свое значение и при  = 0, т.е. будет возникать вне зависимости от всяких других ЭДС, действующих в той же цепи.

Знак «минус» служит математическим выражением правила (закона) Ленца.

Таким образом, формула (4.14) является математическим выражением основного закона электромагнитной индукции (в формулировке Максвелла).

Аналогично можно получить вывод этого закона и для отрезка проводника (в формулировке Фарадея).

4.3. Явление самоиндукции. Магнитное поле бесконечно длинного соленоида. Коэффициенты индуктивности и взаимной индуктивности

Известно, что вокруг любого проводника с током возникает магнитное поле. Следовательно, с любым контуром тока всегда связан поток магнитной индукции. Этот поток будет изменяться при изменении силы тока в контуре, а также формы контура или магнитной проницаемости окружающей среды. Изменение же магнитного потока, согласно закону электромагнитной индукции, возбудит в контуре ЭДС. ЭДС электромагнитной индукции, которая возникает в каком-либо контуре вследствие изменения магнитного потока, создаваемого электрическим током этого контура, называют ЭДС самоиндукции (рис. 4.4).

Величина ЭДС самоиндукции может быть определена по общей формуле, выражающей основной закон электромагнитной индукции:

.

Рассчитаем ЭДС самоиндукции, возникающую в бесконечно длинном соленоиде, магнитное поле которого однородно находится внутри объема соленоида, заполненного средой с магнитной проницаемостью .

Магнитный поток Ф1, пронизывающий каждый виток соленоида сечением S,

. (4.15)

При изменении тока в соленоиде в каждом витке возникает ЭДС самоиндукции:

. (4.16)

В N последовательно соединенных витках соленоида возникает ЭДС самоиндукции:

(4.17)

где — коэффициент самоиндукции или индуктивность.

Индуктивность L зависит от формы, размеров проводника и магнитной проницаемости среды, окружающей проводник.

При с = L, т.е. индуктивность (коэффициент самоиндукции) – это физическая величина, численно равная ЭДС самоиндукции, возникающей в проводнике при скорости изменения тока в нем, равной 1 А/с. В системе СИ индуктивность проводников измеряется в «генри» (Гн).

Один Гн (генри) – это индуктивность такого проводника, в котором при скорости изменения тока в 1 А/с индуцируется ЭДС самоиндукции, равная 1 В.

. (4.18)

Следовательно, ЭДС самоиндукции прямо пропорциональна скорости изменения тока в проводнике. Оказывается, что данное утверждение справедливо для любых проводников.

Если L  const, что возможно при  = f(H),

. (4.19)

То есть при наличии ферромагнетиков и в переменных магнитных полях коэффициент пропорциональности в выражении для ЭДС самоиндукции не равен L.

Таким образом, в проводниках с переменным током существуют одновременно две ЭДС — источника тока и самоиндукции.

При возрастании тока ,с 0 — ЭДС самоиндукции препятствует уменьшению тока в проводнике.

Следовательно, с противодействует причине, которая порождает ее (препятствует изменению тока в проводнике).

Сравнивая выражения идля магнитного потока, имеем

4.3.1. Взаимная индукция. Коэффициент взаимной индукции

Взаимная индукция, явление, в котором обнаруживается магнитная связь двух или более электрических цепей. Благодаря этой связи возникает ЭДС индукции в одном из контуров при изменении тока в другом. Количественной характеристикой магнитной связи электрических цепей является взаимная индуктивность.

Если два контура (два замкнутых проводника) находятся в магнитных полях друг друга, то при всяком изменении тока в одном из них происходит изменение магнитного потока, пронизывающего (сцепленного) другой контур, что вызывает в нем появление ЭДС индукции (рис. 4.5).

Магнитный поток через первый контур с током I1 частично пронизывает площадь, ограниченную вторым контуром. Причем магнитный поток Ф12 через контур два прямо пропорционален току I1:

, (4.21)

где М12 — коэффициент пропорциональности, зависящий от размеров, формы контуров, расстояния между ними, от их взаимного расположения, а также от магнитной проницаемости окружающей среды. Он называется взаимной индуктивностью или коэффициентом взаимной индукции контуров. В системе СИ измеряется в генри (Гн).

Если ток I2 течет в контуре «два», то магнитный поток Ф21 через контур «один» также пропорционален току I2:

. (4.22)

Согласно закону электромагнитной индукции,

; (4.23)

, (4.24)

где 2 и 1 — возникающие во втором и в первом контурах ЭДС индукции;

и — скорости изменения магнитных потоков через соответствующие контуры.

Взаимная индукция лежит в основе действия трансформаторов.

studfiles.net

Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Вывод закона электромагнитной индукции из закона сохранения энергии

Явлением электромагнитной индукции называются три, вообще говоря, различных явления:

1) Возникновение электрического тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего контур. Этот ток получил название индукционного. Индукция магнитного поля может меняться как по величине, так и по направлению.

2) Возникновение индукционного тока в замкнутом проводящем контуре при его движении в постоянном магнитном поле. Движение контура может быть поступательным, вращательным, а также означать его деформацию.

3) Разделение зарядов в незамкнутом отрезке проводника при его движении в постоянном магнитном поле. При этом в проводнике возникает электрическое поле, создаваемое разделенными зарядами. Обнаружить это явление можно, измеряя разность потенциалов (напряжение) между концами проводника.

Общими чертами всех трех явлений являются возникновение сторонних сил в проводниках.

Различающимися чертами является природа сторонних сил. Во втором и третьем явлениях сторонние силы – силы Лоренца. В первом явлении изменяющееся магнитное поле создает в окружающем пространстве особый вид электрического поля – вихревое электрическое поле. Оно по некоторым свойствам похоже на электростатическое (характеризуется напряженностью электрического поля, действует как на неподвижные, так и на движущиеся заряды), а по некоторым – напоминает магнитное (силовые линии замкнуты). В данном случае сторонние силы – силы, действующие со стороны вихревого электрического поля на заряженные частицы в проводниках (носители тока).

Правило Ленца. Возникающий в замкнутом контуре индукционный ток противодействует тому изменению магнитного потока, которым вызван данный ток.

Закон электромагнитной индукции .

Закон электромагнитной индукции (для многих витков) .

studopedia.info

Закон Фарадея и его вывод из закона сохранения энергии

Закон Фарадея и его вывод из закона сохранения энергии — раздел Электротехника, Закон сохранения электрического заряда Обобщая Результаты Своих Многочислен­Ных Опытов, Фарадей Пришел К Количе­Стве.

Обобщая результаты своих многочислен­ных опытов, Фарадей пришел к количе­ственному закону электромагнитной ин­дукции. Он показал, что всякий раз, когда происходит изменение сцепленного с кон­туром потока магнитной индукции, в контуре возникает индукционный ток; возник­новение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой элек­тромагнитной индукции.Значение индук­ционного тока, а следовательно, и э. д. с, электромагнитной индукции ξi определя­ются только скоростью изменения магнит­ного потока, т. е.

Теперь необходимо выяснить знак ξi. В § 120 было показано, что знак магнитно­го потока зависит от выбора положитель­ной нормали к контуру. В свою очередь, положительное направление нормали свя­зано с током правилом правого винта (см. § 109). Следовательно, выбирая опре­деленное положительное направление нор­мали, мы определяем как знак потока маг­нитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими пред­ставлениями и выводами, можно соответ­ственно прийти к формулировке закона электромагнитной индукции Фарадея:какова бы ни была причина изменения потока магнитной индукции, охватыва­емого замкнутым проводящим контуром, возникающая в контуре э.д.с.

Знак минус показывает, что увеличе­ние потока (dФ/dt>0) вызывает э.д.с.

т. е. направления потока и поля индукци­онного тока совпадают. Знак минус в фор­муле (123.2) является математическим выражением правила Ленца — общего правила для нахождения направления ин­дукционного тока, выведенного в 1833 г.

Правило Ленца:индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного по­тока, вызвавшего этот индукционный ток.

Закон Фарадея (см. (123.2)) может быть непосредственно получен из закона сохранения энергии, как это впервые сде­лал Г. Гельмгольц. Рассмотрим проводник с током I, который помещен в однородное магнитное поле, перпендикулярное плоско­сти контура, и может свободно переме­щаться (см. рис. 177). Под действием си­лы Ампера F, направление которой пока­зано на рисунке, проводник перемещается на отрезок dx. Таким образом, сила Ампе­ра производит работу (см.(121.1)) dA=IdФ, где dФ — пересеченный проводни­ком магнитный поток.

Если полное сопротивление контура равно R, то, согласно закону сохранения энергии, работа источника тока за вре­мя dt (ξIdt) будет складываться из рабо­ты на джоулеву теплоту (I 2 Rdt) и работы по перемещению проводника в магнитном поле (IdФ):

где-dФ/dt=ξi есть не что иное, как закон Фарадея (см. (123.2)).

Закон Фарадеяможно сформулиро­вать еще таким образом: э.д.с. ξi элек­тромагнитной индукции в контуре числен­но равна и противоположна по знаку ско­рости изменения магнитного потока сквозь поверхность, ограниченную этим конту­ром. Этот закон является универсальным: э.д.с. ξi не зависит от способа изменения магнитного потока.

Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер(Вб), получим

Какова природа э.д.с. электромагнит­ной индукции? Если проводник (подвиж­ная перемычка контура на рис. 177) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противо­положно току, т. е. она будет создавать в проводнике индукционный ток противо­положного направления (за направление электрического тока принимается движе­ние положительных зарядов). Таким обра­зом, возбуждение э.д.с. индукции при движении контура в постоянном магнит­ном поле объясняется действием силы Ло­ренца, возникающей при движении про­водника.

Согласно закону Фарадея, возникнове­ние э.д.с. электромагнитной индукции возможно и в случае неподвижного кон­тура, находящегося в переменном магнит­ном поле. Однако сила Лоренца на непод­вижные заряды не действует, поэтому в данном случае ею нельзя объяснить воз­никновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в непод­вижных проводниках предположил, что всякое переменное магнитное поле воз­буждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция векто­ра ЕВ этого поля по любому неподвижному контуру L проводника представляет собой э.д.с. электромагнитной индукции:

allrefs.net

38. Вывод эдс индукции из закона сохранения энергии. Механизм возникновения эдс индукции. Вихревые токи (Токи Фуко)

Обобщая результаты своих многочисленных опытов, Фарадей пришел к количественному закону электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Значение индукционного тока, а следовательно, и э.д.с. электро­магнитной индукции определяются только скоростью изменения магнитного потока, т. е.

Теперь необходимо выяснить знак . В § 120 было показано, что знак магнитного потока зависит от выбора положительной нормали к контуру. В свою очередь, положительное направление нормали определяется правилом правого винта. Следовательно, выбирая положительное направление нормали, мы определяем как знак потока магнитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими представлениями и выводами, можно соответственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая в контуре э. д. с.

(123.2)

Знак минус показывает, что увеличение потока вызывает э. д. с. т. е. поле индукционного тока направлено навстречу потоку; уменьшение потока вызывает т.е. направления потока и поля индукционного тока совпадают. Знак минус в формуле (123.2) определяется правилом Ленца — общим правилом для нахождения направления индукционного тока, выведенного в 1833 г.

Механизм возникновения э.д.с. индукции можно пояснить на простом примере. Пусть изменение магнитного потока, пронизывающего контур, проис-ходит за счет изменения площади контура вследствие движения одного из проводников, составляющих контур. Пусть, например, контур образован п-образным проводником 1 и скользящей перемычкой 2 (рис. 3.12), и пусть линии индукции магнитного поля В перпендикулярны плоскости контура и направлены от нас (показаны крестиками).

При скольжении перемычки вниз площадь контура S будет возрастать, что приведет к возрастанию магнитного потока, равного ВS. При этом, со-гласно закону Фарадея должна возникнуть э.д.с. индукции. Непосредственной физической причиной возникновения индукционного тока в контуре в данном случае является сила Лоренца. Действительно, при движении перемычки вниз со скоростью v, с той же скоростью будут перемещаться находящиеся в ней электроны. Сила Лоренца, действующая на каждый электрон, будет равна evB (где е — заряд электрона) и направлена влево. Формально эту силу можно рассматривать как проявление поля сторонних сил, имеющего напряженность Ес. Из формулы (2.22) вытекает, что Ес = vB. Электродвижущая сила индукции Еi, создаваемая полем Есво всей движущейся перемычке длиной l будет согласно (2.24) равна

Скорость v движения перемычки представим как производную dx/dt. Тогда

Еi = В= В(3.26)

В (3.26) учтено, что произведение ldx представляет со-бой приращение dS площади контура. В свою очередь произведение BdS равно приращению dФ магнитного потока. В итоге мы получаем, что э.д.с. индукции равна производной dФ/dt от магнитного потока

то есть мы пришли к закону Фарадея. В проведенных рассуждениях мы для простоты оперировали модулями векторов Ес, v и В, поэтому ве-личину э.д.с. индукции в формуле (3.27) определили также лишь по модулю.

Рассмотренное объяснение механизма возникновения э.д.с. индукции относится к случаю, когда изменение магнитного потока происходит за счет подвижных проводников. Но магнитный поток может меняться также и путем изменения величины В при неизменной геометрии контура. Тогда сила Лоренца не возникает, а ин-дукционный ток возбуждается в этом случае вихревым электрическим полем, порождае-мым меняющимся во времени магнитным полем. Этот более общий случай возникновения э.д.с. индукции будет рассмотрен в следующем разделе (тема 4).

Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока.

Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786—1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.

Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих проводников сплошными.

Смотрите еще:

  • Спецсигнал штрафы Ответственность водителя за установку специальных сигналов на автомобиль По закону Российской Федерации специальные звуковые и световые сигналы устанавливаются только на автомобили специальных служб (скорая помощь, полиция, пожарная служба, МЧС, ВАИ), чтобы обозначить их приоритет на дороге и предупредить […]
  • Заявление на получение пенсии по почте Получение пенсии Оформляя получение пенсии, вы должны будете выбрать, каким образом вы хотите её получать. Правила выплаты пенсий регулируются Приказом Минтруда России от 17.11.2014 N 885н «Об утверждении правил выплаты пенсий, осуществления контроля за их выплатой, проведения проверок документов, […]
  • Правила назначения инвалидности в 2018 году При каких заболеваниях дают инвалидность в 2018 году В случае серьезного нарушения функционирования организма гражданин Российской Федерации признается инвалидом. Причем иногда люди не подозревают, что имеют право на льготы и преференции, обусловленные наличием группы. Ведь третья категория присваивается […]
  • 0 5 ставки приказ Приказ о переводе на полную ставку (образец) Обновление: 17 мая 2017 г. Образец приказа о переводе работника на неполное рабочее время по соглашению сторон Неполное и полное рабочее время может быть установлено работнику как при приеме на работу, так и во время его трудовой деятельности у работодателя (как […]
  • Минимальная пенсия россиян Размер минимальной пенсии в России в 2018 году Так как основным доходом пожилых людей, как правило, является пенсия, то вопрос размера минимального пособия интересует большое число граждан. Часто чиновники дают довольно туманные ответы, обещая поднять социальные стандарты, как только экономика станет более […]
  • Адвокат для суда со страховой Автоюристы Москвы Любой нормальный автовладелец, послушно застраховав свой автомобиль по ОСАГО, да еще разорившись на страховку по КАСКО, живет с уверенностью в завтрашнем дне. Еще бы! Ведь в нашей стране сегодня отлаженно действует защита прав потребителей. Страхование автомобиля – одна из самых […]
  • Как вернуть товар розетка Розетка — Возврат товара Речь пойдет о возврате товара в интернет магазин розетка. В моем случае товар был одновременно и не надлежащего, и как я позднее понял, все же надлежащего качества. При всем этом брак был обнаружен после того как я забрал товар со склада новой почты, так же, была проведена […]
  • Пособия фсс в 2018 году спб Виды и размер детских пособий в Санкт-Петербурге в 2018 году Санкт-Петербург считается одним из социально ориентированных регионов России. Особое внимание правительство северной столицы уделяет поддержке семьи и детства: социальные меры этого плана самые обширные в регионе. Питерцам, воспитывающим детей или […]

Комментарии запрещены.